The 14th International Conference on

Miniaturized Systems for Chemistry and Life Sciences

Home | General Info | Program Committee | Previous Conferences| Different periodic tables | Conference Officials |

Abstract Guidelines | CBMS Directors | Awards | Authors | Grouping methods | Periodic trends and patterns |Contact





Nihonium is a synthetic chemical element with the symbol Nh and atomic number 113. It is extremely radioactive; its most stable known isotope, nihonium-286, has a half-life of about 10 seconds. In the periodic table, nihonium is a transactinide element in the p-block. It is a member of period 7 and group 13 (boron group).

The syntheses of elements 107 to 112 were conducted at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany, from 1981 to 1996. These elements were made by cold fusion reactions, in which targets made of thallium, lead, and bismuth, which are around the stable configuration of 82 protons, are bombarded with heavy ions of period 4 elements. This creates fused nuclei with low excitation energies due to the stability of the targets' nuclei, significantly increasing the yield of superheavy elements. Cold fusion was pioneered by Yuri Oganessian and his team in 1974 at the Joint Institute for Nuclear Research (JINR) in Dubna, Soviet Union. Yields from cold fusion reactions were found to decrease significantly with increasing atomic number; the resulting nuclei were severely neutron-deficient and short-lived. The GSI team attempted to synthesise element 113 via cold fusion in 1998 and 2003, bombarding bismuth-209 with zinc-70, but were unsuccessful both times.

When the discovery of a new element is claimed, the Joint Working Party (JWP) of the International Union of Pure and Applied Chemistry (IUPAC) and the International Union of Pure and Applied Physics (IUPAP) assembles to examine the claims according to their criteria for the discovery of a new element, and decides scientific priority and naming rights for the elements. According to the JWP criteria, a discovery must demonstrate that the element has an atomic number different from all previously observed values. It should also preferably be repeated by other laboratories, although this requirement has been waived where the data is of very high quality. Such a demonstration must establish properties, either physical or chemical, of the new element and establish that they are those of a previously unknown element. The main techniques used to demonstrate atomic number are cross-reactions (creating claimed nuclides as parents or daughters of other nuclides produced by a different reaction) and anchoring decay chains to known daughter nuclides. For the JWP, priority in confirmation takes precedence over the date of the original claim. Both teams set out to confirm their results by these methods.

In December 2015, the conclusions of a new JWP report were published by IUPAC in a press release, in which element 113 was awarded to Riken; elements 115, 117, and 118 were awarded to the collaborations involving the JINR. A joint 2016 announcement by IUPAC and IUPAP had been scheduled to coincide with the publication of the JWP reports, but IUPAC alone decided on an early release because the news of Riken being awarded credit for element 113 had been leaked to Japanese newspapers. For the first time in history, a team of Asian physicists would name a new element. The JINR considered the awarding of element 113 to Riken unexpected, citing their own 2003 production of elements 115 and 113, and pointing to the precedents of elements 103, 104, and 105 where IUPAC had awarded joint credit to the JINR and LBNL. They stated that they respected IUPAC's decision, but reserved determination of their position for the official publication of the JWP reports.

After the publication of the JWP reports, Sergey Dimitriev, the lab director of the Flerov lab at the JINR where the discoveries were made, remarked that he was happy with IUPAC's decision, mentioning the time Riken spent on their experiment and their good relations with Morita, who had learnt the basics of synthesising superheavy elements at the JINR.

Nihonium has no stable or naturally occurring isotopes. Several radioactive isotopes have been synthesised in the laboratory, either by fusing two atoms or by observing the decay of heavier elements. Eight different isotopes of nihonium have been reported with atomic masses 278, 282–287, and 290 (287Nh and 290Nh are unconfirmed); they all decay through alpha decay to isotopes of roentgenium; there have been indications that nihonium-284 can also decay by electron capture to copernicium-284.

The stability of nuclei quickly decreases with the increase in atomic number after curium, element 96, whose half-life is over ten thousand times longer than that of any subsequent element. All isotopes with an atomic number above 101 undergo radioactive decay with half-lives of less than 30 hours: this is because of the ever-increasing Coulomb repulsion of protons, so that the strong nuclear force cannot hold the nucleus together against spontaneous fission for long. Calculations suggest that in the absence of other stabilising factors, elements with more than 103 protons should not exist. Researchers in the 1960s suggested that the closed nuclear shells around 114 protons and 184 neutrons should counteract this instability, and create an "island of stability" containing nuclides with half-lives reaching thousands or millions of years. The existence of the island is still unproven, but the existence of the superheavy elements (including nihonium) confirms that the stabilising effect is real, and in general the known superheavy nuclides become longer-lived as they approach the predicted location of the island.


 Copyright 2009, All Rights Reserved, MicroTAS2010