The 14th International Conference on

Miniaturized Systems for Chemistry and Life Sciences

Home | General Info | Program Committee | Previous Conferences| Different periodic tables | Conference Officials |

Abstract Guidelines | CBMS Directors | Awards | Authors | Grouping methods | Periodic trends and patterns |Contact





Oganesson is a synthetic chemical element with the symbol Og and atomic number 118. It was first synthesized in 2002 at the Joint Institute for Nuclear Research (JINR) in Dubna, near Moscow in Russia, by a joint team of Russian and American scientists. In December 2015, it was recognized as one of four new elements by the Joint Working Party of the international scientific bodies IUPAC and IUPAP. It was formally named on 28 November 2016. The name is in line with the tradition of honoring a scientist, in this case the nuclear physicist Yuri Oganessian, who has played a leading role in the discovery of the heaviest elements in the periodic table. It is one of only two elements named after a person who was alive at the time of naming, the other being seaborgium; it is also the only element whose namesake is alive today.

The possibility of a seventh noble gas, after helium, neon, argon, krypton, xenon, and radon was considered almost as soon as the noble gas group was discovered. The Danish chemist Hans Peter Jorgen Julius Thomsen predicted in April 1895, the year after the discovery of argon, that there was a whole series of chemically inert gases similar to argon that would bridge the halogen and alkali metal groups: he expected that the seventh of this series would end a 32-element period which contained thorium and uranium and have an atomic weight of 292, close to the 294 now known for the first and only confirmed isotope of oganesson. Niels Bohr noted in 1922 that this seventh noble gas should have atomic number 118 and predicted its electronic structure as 2, 8, 18, 32, 32, 18, 8, matching modern predictions. Following this, Aristid von Grosse wrote an article in 1965 predicting the likely properties of element 118. It was 107 years from Thomsen's prediction before oganesson was successfully synthesised, although its chemical properties have not been investigated to determine if it behaves as the heavier congener of radon.

The following year, they published a retraction after researchers at other laboratories were unable to duplicate the results and the Berkeley lab could not duplicate them either. In June 2002, the director of the lab announced that the original claim of the discovery of these two elements had been based on data fabricated by principal author Victor Ninov. Newer experimental results and theoretical predictions have confirmed the exponential decrease in cross-sections with lead and bismuth targets as the atomic number of the resulting nuclide increases.

Using Mendeleev's nomenclature for unnamed and undiscovered elements, oganesson is sometimes known as eka-radon (until the 1960s as eka-emanation, emanation being the old name for radon). In 1979, IUPAC assigned the systematic placeholder name ununoctium to the undiscovered element, with the corresponding symbol of Uuo, and recommended that it be used until after confirmed discovery of the element. Although widely used in the chemical community on all levels, from chemistry classrooms to advanced textbooks, the recommendations were mostly ignored among scientists in the field, who called it "element 118", with the symbol of E118, (118), or even simply 118.

The stability of nuclei quickly decreases with the increase in atomic number after curium, element 96, whose half-life is four orders of magnitude longer than that of any subsequent element. All isotopes with an atomic number above 101 undergo radioactive decay with half-lives of less than 30 hours. No elements with atomic numbers above 82 (after lead) have stable isotopes. This is because of the ever-increasing Coulomb repulsion of protons, so that the strong nuclear force cannot hold the nucleus together against spontaneous fission for long. Calculations suggest that in the absence of other stabilizing factors, elements with more than 104 protons should not exist. However, researchers in the 1960s suggested that the closed nuclear shells around 114 protons and 184 neutrons should counteract this instability, creating an "island of stability" where nuclides could have half-lives reaching thousands or millions of years. While scientists have still not reached the island, the mere existence of the superheavy elements (including oganesson) confirms that this stabilizing effect is real, and in general the known superheavy nuclides become exponentially longer-lived as they approach the predicted location of the island. Oganesson is radioactive and has a half-life that appears to be less than a millisecond. Nonetheless, this is still longer than some predicted values, thus giving further support to the idea of this "island of stability".

Consequently, some expect oganesson to have similar physical and chemical properties to other members of its group, most closely resembling the noble gas above it in the periodic table, radon. Following the periodic trend, oganesson would be expected to be slightly more reactive than radon. However, theoretical calculations have shown that it could be significantly more reactive. In addition to being far more reactive than radon, oganesson may be even more reactive than the elements flerovium and copernicium, which are heavier homologs of the more chemically active elements lead and mercury respectively. The reason for the possible enhancement of the chemical activity of oganesson relative to radon is an energetic destabilization and a radial expansion of the last occupied 7p-subshell. More precisely, considerable spin¥orbit interactions between the 7p electrons and the inert 7s electrons effectively lead to a second valence shell closing at flerovium, and a significant decrease in stabilization of the closed shell of oganesson. It has also been calculated that oganesson, unlike the other noble gases, binds an electron with release of energy, or in other words, it exhibits positive electron affinity, due to the relativistically stabilized 8s energy level and the destabilized 7p3/2 level, whereas copernicium and flerovium are predicted to have no electron affinity.


 Copyright 2009, All Rights Reserved, MicroTAS2010